Metamath Proof Explorer


Theorem dmmptdf

Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses dmmptdf.x x φ
dmmptdf.a A = x B C
dmmptdf.c φ x B C V
Assertion dmmptdf φ dom A = B

Proof

Step Hyp Ref Expression
1 dmmptdf.x x φ
2 dmmptdf.a A = x B C
3 dmmptdf.c φ x B C V
4 nfcv _ x B
5 1 4 2 3 dmmptdff φ dom A = B