Metamath Proof Explorer


Theorem dmmptdf2

Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses dmmptdf2.x x φ
dmmptdf2.b _ x B
dmmptdf2.a A = x B C
dmmptdf2.c φ x B C V
Assertion dmmptdf2 φ dom A = B

Proof

Step Hyp Ref Expression
1 dmmptdf2.x x φ
2 dmmptdf2.b _ x B
3 dmmptdf2.a A = x B C
4 dmmptdf2.c φ x B C V
5 3 dmmpt dom A = x B | C V
6 4 elexd φ x B C V
7 1 6 ralrimia φ x B C V
8 2 rabid2f B = x B | C V x B C V
9 7 8 sylibr φ B = x B | C V
10 5 9 eqtr4id φ dom A = B