Metamath Proof Explorer


Theorem dmmptdff

Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Hypotheses dmmptdff.x x φ
dmmptdff.1 _ x B
dmmptdff.a A = x B C
dmmptdff.c φ x B C V
Assertion dmmptdff φ dom A = B

Proof

Step Hyp Ref Expression
1 dmmptdff.x x φ
2 dmmptdff.1 _ x B
3 dmmptdff.a A = x B C
4 dmmptdff.c φ x B C V
5 3 dmmpt dom A = x B | C V
6 4 elexd φ x B C V
7 1 6 ralrimia φ x B C V
8 2 rabid2f B = x B | C V x B C V
9 7 8 sylibr φ B = x B | C V
10 5 9 eqtr4id φ dom A = B