Metamath Proof Explorer


Theorem dmmptif

Description: Domain of the mapping operation. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Hypotheses dmmptif.1 _xA
dmmptif.2 BV
dmmptif.3 F=xAB
Assertion dmmptif domF=A

Proof

Step Hyp Ref Expression
1 dmmptif.1 _xA
2 dmmptif.2 BV
3 dmmptif.3 F=xAB
4 1 2 3 fnmptif FFnA
5 fndm FFnAdomF=A
6 4 5 ax-mp domF=A