Metamath Proof Explorer


Theorem dmmptif

Description: Domain of the mapping operation. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Hypotheses dmmptif.1 _ x A
dmmptif.2 B V
dmmptif.3 F = x A B
Assertion dmmptif dom F = A

Proof

Step Hyp Ref Expression
1 dmmptif.1 _ x A
2 dmmptif.2 B V
3 dmmptif.3 F = x A B
4 1 2 3 fnmptif F Fn A
5 fndm F Fn A dom F = A
6 4 5 ax-mp dom F = A