Metamath Proof Explorer


Theorem dmmptssf

Description: The domain of a mapping is a subset of its base class. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses dmmptssf.1 _ x A
dmmptssf.2 F = x A B
Assertion dmmptssf dom F A

Proof

Step Hyp Ref Expression
1 dmmptssf.1 _ x A
2 dmmptssf.2 F = x A B
3 2 dmmpt dom F = x A | B V
4 1 ssrab2f x A | B V A
5 3 4 eqsstri dom F A