Metamath Proof Explorer


Theorem dmmulsr

Description: Domain of multiplication on signed reals. (Contributed by NM, 25-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion dmmulsr dom 𝑹 = 𝑹 × 𝑹

Proof

Step Hyp Ref Expression
1 df-mr 𝑹 = x y z | x 𝑹 y 𝑹 w v u f x = w v ~ 𝑹 y = u f ~ 𝑹 z = w 𝑷 u + 𝑷 v 𝑷 f w 𝑷 f + 𝑷 v 𝑷 u ~ 𝑹
2 1 dmeqi dom 𝑹 = dom x y z | x 𝑹 y 𝑹 w v u f x = w v ~ 𝑹 y = u f ~ 𝑹 z = w 𝑷 u + 𝑷 v 𝑷 f w 𝑷 f + 𝑷 v 𝑷 u ~ 𝑹
3 dmoprabss dom x y z | x 𝑹 y 𝑹 w v u f x = w v ~ 𝑹 y = u f ~ 𝑹 z = w 𝑷 u + 𝑷 v 𝑷 f w 𝑷 f + 𝑷 v 𝑷 u ~ 𝑹 𝑹 × 𝑹
4 2 3 eqsstri dom 𝑹 𝑹 × 𝑹
5 0nsr ¬ 𝑹
6 mulclsr x 𝑹 y 𝑹 x 𝑹 y 𝑹
7 5 6 oprssdm 𝑹 × 𝑹 dom 𝑹
8 4 7 eqssi dom 𝑹 = 𝑹 × 𝑹