Description: A set is an element of the domain of a ordered pair class abstraction iff there is a second set so that both sets fulfil the wff of the class abstraction. (Contributed by AV, 19-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dmopabel.d | ||
| Assertion | dmopabelb |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmopabel.d | ||
| 2 | dmopab | ||
| 3 | 2 | eleq2i | |
| 4 | 1 | exbidv | |
| 5 | eqid | ||
| 6 | 4 5 | elab2g | |
| 7 | 3 6 | bitrid |