Metamath Proof Explorer


Theorem dmopabss

Description: Upper bound for the domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004)

Ref Expression
Assertion dmopabss dom x y | x A φ A

Proof

Step Hyp Ref Expression
1 dmopab dom x y | x A φ = x | y x A φ
2 19.42v y x A φ x A y φ
3 2 abbii x | y x A φ = x | x A y φ
4 ssab2 x | x A y φ A
5 3 4 eqsstri x | y x A φ A
6 1 5 eqsstri dom x y | x A φ A