Metamath Proof Explorer


Theorem dmpropg

Description: The domain of an unordered pair of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion dmpropg B V D W dom A B C D = A C

Proof

Step Hyp Ref Expression
1 dmsnopg B V dom A B = A
2 dmsnopg D W dom C D = C
3 uneq12 dom A B = A dom C D = C dom A B dom C D = A C
4 1 2 3 syl2an B V D W dom A B dom C D = A C
5 df-pr A B C D = A B C D
6 5 dmeqi dom A B C D = dom A B C D
7 dmun dom A B C D = dom A B dom C D
8 6 7 eqtri dom A B C D = dom A B dom C D
9 df-pr A C = A C
10 4 8 9 3eqtr4g B V D W dom A B C D = A C