Metamath Proof Explorer


Theorem dmrecnq

Description: Domain of reciprocal on positive fractions. (Contributed by NM, 6-Mar-1996) (Revised by Mario Carneiro, 10-Jul-2014) (New usage is discouraged.)

Ref Expression
Assertion dmrecnq dom * 𝑸 = 𝑸

Proof

Step Hyp Ref Expression
1 df-rq * 𝑸 = 𝑸 -1 1 𝑸
2 cnvimass 𝑸 -1 1 𝑸 dom 𝑸
3 1 2 eqsstri * 𝑸 dom 𝑸
4 mulnqf 𝑸 : 𝑸 × 𝑸 𝑸
5 4 fdmi dom 𝑸 = 𝑸 × 𝑸
6 3 5 sseqtri * 𝑸 𝑸 × 𝑸
7 dmss * 𝑸 𝑸 × 𝑸 dom * 𝑸 dom 𝑸 × 𝑸
8 6 7 ax-mp dom * 𝑸 dom 𝑸 × 𝑸
9 dmxpid dom 𝑸 × 𝑸 = 𝑸
10 8 9 sseqtri dom * 𝑸 𝑸
11 recclnq x 𝑸 * 𝑸 x 𝑸
12 opelxpi x 𝑸 * 𝑸 x 𝑸 x * 𝑸 x 𝑸 × 𝑸
13 11 12 mpdan x 𝑸 x * 𝑸 x 𝑸 × 𝑸
14 df-ov x 𝑸 * 𝑸 x = 𝑸 x * 𝑸 x
15 recidnq x 𝑸 x 𝑸 * 𝑸 x = 1 𝑸
16 14 15 eqtr3id x 𝑸 𝑸 x * 𝑸 x = 1 𝑸
17 ffn 𝑸 : 𝑸 × 𝑸 𝑸 𝑸 Fn 𝑸 × 𝑸
18 fniniseg 𝑸 Fn 𝑸 × 𝑸 x * 𝑸 x 𝑸 -1 1 𝑸 x * 𝑸 x 𝑸 × 𝑸 𝑸 x * 𝑸 x = 1 𝑸
19 4 17 18 mp2b x * 𝑸 x 𝑸 -1 1 𝑸 x * 𝑸 x 𝑸 × 𝑸 𝑸 x * 𝑸 x = 1 𝑸
20 13 16 19 sylanbrc x 𝑸 x * 𝑸 x 𝑸 -1 1 𝑸
21 20 1 eleqtrrdi x 𝑸 x * 𝑸 x * 𝑸
22 df-br x * 𝑸 * 𝑸 x x * 𝑸 x * 𝑸
23 21 22 sylibr x 𝑸 x * 𝑸 * 𝑸 x
24 vex x V
25 fvex * 𝑸 x V
26 24 25 breldm x * 𝑸 * 𝑸 x x dom * 𝑸
27 23 26 syl x 𝑸 x dom * 𝑸
28 27 ssriv 𝑸 dom * 𝑸
29 10 28 eqssi dom * 𝑸 = 𝑸