Metamath Proof Explorer


Theorem dmressnsn

Description: The domain of a restriction to a singleton is a singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017)

Ref Expression
Assertion dmressnsn A dom F dom F A = A

Proof

Step Hyp Ref Expression
1 dmres dom F A = A dom F
2 snssi A dom F A dom F
3 df-ss A dom F A dom F = A
4 2 3 sylib A dom F A dom F = A
5 1 4 eqtrid A dom F dom F A = A