Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
dmresv
Next ⟩
rnresv
Metamath Proof Explorer
Ascii
Unicode
Theorem
dmresv
Description:
The domain of a universal restriction.
(Contributed by
NM
, 14-May-2008)
Ref
Expression
Assertion
dmresv
⊢
dom
⁡
A
↾
V
=
dom
⁡
A
Proof
Step
Hyp
Ref
Expression
1
dmres
⊢
dom
⁡
A
↾
V
=
V
∩
dom
⁡
A
2
incom
⊢
V
∩
dom
⁡
A
=
dom
⁡
A
∩
V
3
inv1
⊢
dom
⁡
A
∩
V
=
dom
⁡
A
4
1
2
3
3eqtri
⊢
dom
⁡
A
↾
V
=
dom
⁡
A