Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
dmsn0
Next ⟩
cnvsn0
Metamath Proof Explorer
Ascii
Unicode
Theorem
dmsn0
Description:
The domain of the singleton of the empty set is empty.
(Contributed by
NM
, 30-Jan-2004)
Ref
Expression
Assertion
dmsn0
⊢
dom
⁡
∅
=
∅
Proof
Step
Hyp
Ref
Expression
1
0nelxp
⊢
¬
∅
∈
V
×
V
2
dmsnn0
⊢
∅
∈
V
×
V
↔
dom
⁡
∅
≠
∅
3
2
necon2bbii
⊢
dom
⁡
∅
=
∅
↔
¬
∅
∈
V
×
V
4
1
3
mpbir
⊢
dom
⁡
∅
=
∅