Metamath Proof Explorer


Theorem dmsn0el

Description: The domain of a singleton is empty if the singleton's argument contains the empty set. (Contributed by NM, 15-Dec-2008)

Ref Expression
Assertion dmsn0el A dom A =

Proof

Step Hyp Ref Expression
1 dmsnn0 A V × V dom A
2 0nelelxp A V × V ¬ A
3 1 2 sylbir dom A ¬ A
4 3 necon4ai A dom A =