Metamath Proof Explorer


Theorem dmsnn0

Description: The domain of a singleton is nonzero iff the singleton argument is an ordered pair. (Contributed by NM, 14-Dec-2008) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion dmsnn0 A V × V dom A

Proof

Step Hyp Ref Expression
1 vex x V
2 1 eldm x dom A y x A y
3 df-br x A y x y A
4 opex x y V
5 4 elsn x y A x y = A
6 eqcom x y = A A = x y
7 3 5 6 3bitri x A y A = x y
8 7 exbii y x A y y A = x y
9 2 8 bitr2i y A = x y x dom A
10 9 exbii x y A = x y x x dom A
11 elvv A V × V x y A = x y
12 n0 dom A x x dom A
13 10 11 12 3bitr4i A V × V dom A