Metamath Proof Explorer


Theorem dmsnopg

Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion dmsnopg B V dom A B = A

Proof

Step Hyp Ref Expression
1 vex x V
2 vex y V
3 1 2 opth1 x y = A B x = A
4 3 exlimiv y x y = A B x = A
5 opeq1 x = A x B = A B
6 opeq2 y = B x y = x B
7 6 eqeq1d y = B x y = A B x B = A B
8 7 spcegv B V x B = A B y x y = A B
9 5 8 syl5 B V x = A y x y = A B
10 4 9 impbid2 B V y x y = A B x = A
11 1 eldm2 x dom A B y x y A B
12 opex x y V
13 12 elsn x y A B x y = A B
14 13 exbii y x y A B y x y = A B
15 11 14 bitri x dom A B y x y = A B
16 velsn x A x = A
17 10 15 16 3bitr4g B V x dom A B x A
18 17 eqrdv B V dom A B = A