Metamath Proof Explorer


Theorem dmsnopg

Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion dmsnopg BVdomAB=A

Proof

Step Hyp Ref Expression
1 vex xV
2 vex yV
3 1 2 opth1 xy=ABx=A
4 3 exlimiv yxy=ABx=A
5 opeq1 x=AxB=AB
6 opeq2 y=Bxy=xB
7 6 eqeq1d y=Bxy=ABxB=AB
8 7 spcegv BVxB=AByxy=AB
9 5 8 syl5 BVx=Ayxy=AB
10 4 9 impbid2 BVyxy=ABx=A
11 1 eldm2 xdomAByxyAB
12 opex xyV
13 12 elsn xyABxy=AB
14 13 exbii yxyAByxy=AB
15 11 14 bitri xdomAByxy=AB
16 velsn xAx=A
17 10 15 16 3bitr4g BVxdomABxA
18 17 eqrdv BVdomAB=A