Metamath Proof Explorer


Theorem dmsnsnsn

Description: The domain of the singleton of the singleton of a singleton. (Contributed by NM, 15-Sep-2004) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion dmsnsnsn dom A = A

Proof

Step Hyp Ref Expression
1 vex x V
2 1 opid x x = x
3 sneq x = A x = A
4 3 sneqd x = A x = A
5 2 4 eqtrid x = A x x = A
6 5 sneqd x = A x x = A
7 6 dmeqd x = A dom x x = dom A
8 7 3 eqeq12d x = A dom x x = x dom A = A
9 1 dmsnop dom x x = x
10 8 9 vtoclg A V dom A = A
11 0ex V
12 11 snid
13 dmsn0el dom =
14 12 13 ax-mp dom =
15 snprc ¬ A V A =
16 15 biimpi ¬ A V A =
17 16 sneqd ¬ A V A =
18 17 sneqd ¬ A V A =
19 18 dmeqd ¬ A V dom A = dom
20 14 19 16 3eqtr4a ¬ A V dom A = A
21 10 20 pm2.61i dom A = A