Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
dmss
Next ⟩
dmeq
Metamath Proof Explorer
Ascii
Unicode
Theorem
dmss
Description:
Subset theorem for domain.
(Contributed by
NM
, 11-Aug-1994)
Ref
Expression
Assertion
dmss
⊢
A
⊆
B
→
dom
⁡
A
⊆
dom
⁡
B
Proof
Step
Hyp
Ref
Expression
1
ssel
⊢
A
⊆
B
→
x
y
∈
A
→
x
y
∈
B
2
1
eximdv
⊢
A
⊆
B
→
∃
y
x
y
∈
A
→
∃
y
x
y
∈
B
3
vex
⊢
x
∈
V
4
3
eldm2
⊢
x
∈
dom
⁡
A
↔
∃
y
x
y
∈
A
5
3
eldm2
⊢
x
∈
dom
⁡
B
↔
∃
y
x
y
∈
B
6
2
4
5
3imtr4g
⊢
A
⊆
B
→
x
∈
dom
⁡
A
→
x
∈
dom
⁡
B
7
6
ssrdv
⊢
A
⊆
B
→
dom
⁡
A
⊆
dom
⁡
B