Database
BASIC TOPOLOGY
Topology
Topological spaces
Topologies on sets
dmtopon
Next ⟩
fntopon
Metamath Proof Explorer
Ascii
Unicode
Theorem
dmtopon
Description:
The domain of
TopOn
is the universal class
_V
.
(Contributed by
BJ
, 29-Apr-2021)
Ref
Expression
Assertion
dmtopon
⊢
dom
⁡
TopOn
=
V
Proof
Step
Hyp
Ref
Expression
1
vpwex
⊢
𝒫
x
∈
V
2
1
pwex
⊢
𝒫
𝒫
x
∈
V
3
eqcom
⊢
x
=
⋃
y
↔
⋃
y
=
x
4
3
rabbii
⊢
y
∈
Top
|
x
=
⋃
y
=
y
∈
Top
|
⋃
y
=
x
5
rabssab
⊢
y
∈
Top
|
⋃
y
=
x
⊆
y
|
⋃
y
=
x
6
pwpwssunieq
⊢
y
|
⋃
y
=
x
⊆
𝒫
𝒫
x
7
5
6
sstri
⊢
y
∈
Top
|
⋃
y
=
x
⊆
𝒫
𝒫
x
8
4
7
eqsstri
⊢
y
∈
Top
|
x
=
⋃
y
⊆
𝒫
𝒫
x
9
2
8
ssexi
⊢
y
∈
Top
|
x
=
⋃
y
∈
V
10
df-topon
⊢
TopOn
=
x
∈
V
⟼
y
∈
Top
|
x
=
⋃
y
11
9
10
dmmpti
⊢
dom
⁡
TopOn
=
V