Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
dmtpop
Next ⟩
cnvcnvsn
Metamath Proof Explorer
Ascii
Unicode
Theorem
dmtpop
Description:
The domain of an unordered triple of ordered pairs.
(Contributed by
NM
, 14-Sep-2011)
Ref
Expression
Hypotheses
dmsnop.1
⊢
B
∈
V
dmprop.1
⊢
D
∈
V
dmtpop.1
⊢
F
∈
V
Assertion
dmtpop
⊢
dom
⁡
A
B
C
D
E
F
=
A
C
E
Proof
Step
Hyp
Ref
Expression
1
dmsnop.1
⊢
B
∈
V
2
dmprop.1
⊢
D
∈
V
3
dmtpop.1
⊢
F
∈
V
4
df-tp
⊢
A
B
C
D
E
F
=
A
B
C
D
∪
E
F
5
4
dmeqi
⊢
dom
⁡
A
B
C
D
E
F
=
dom
⁡
A
B
C
D
∪
E
F
6
dmun
⊢
dom
⁡
A
B
C
D
∪
E
F
=
dom
⁡
A
B
C
D
∪
dom
⁡
E
F
7
1
2
dmprop
⊢
dom
⁡
A
B
C
D
=
A
C
8
3
dmsnop
⊢
dom
⁡
E
F
=
E
9
7
8
uneq12i
⊢
dom
⁡
A
B
C
D
∪
dom
⁡
E
F
=
A
C
∪
E
10
5
6
9
3eqtri
⊢
dom
⁡
A
B
C
D
E
F
=
A
C
∪
E
11
df-tp
⊢
A
C
E
=
A
C
∪
E
12
10
11
eqtr4i
⊢
dom
⁡
A
B
C
D
E
F
=
A
C
E