Metamath Proof Explorer


Theorem dmtpop

Description: The domain of an unordered triple of ordered pairs. (Contributed by NM, 14-Sep-2011)

Ref Expression
Hypotheses dmsnop.1 B V
dmprop.1 D V
dmtpop.1 F V
Assertion dmtpop dom A B C D E F = A C E

Proof

Step Hyp Ref Expression
1 dmsnop.1 B V
2 dmprop.1 D V
3 dmtpop.1 F V
4 df-tp A B C D E F = A B C D E F
5 4 dmeqi dom A B C D E F = dom A B C D E F
6 dmun dom A B C D E F = dom A B C D dom E F
7 1 2 dmprop dom A B C D = A C
8 3 dmsnop dom E F = E
9 7 8 uneq12i dom A B C D dom E F = A C E
10 5 6 9 3eqtri dom A B C D E F = A C E
11 df-tp A C E = A C E
12 10 11 eqtr4i dom A B C D E F = A C E