Metamath Proof Explorer


Theorem dmxp

Description: The domain of a Cartesian product. Part of Theorem 3.13(x) of Monk1 p. 37. (Contributed by NM, 28-Jul-1995) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion dmxp B dom A × B = A

Proof

Step Hyp Ref Expression
1 df-xp A × B = y x | y A x B
2 1 dmeqi dom A × B = dom y x | y A x B
3 n0 B x x B
4 3 biimpi B x x B
5 4 ralrimivw B y A x x B
6 dmopab3 y A x x B dom y x | y A x B = A
7 5 6 sylib B dom y x | y A x B = A
8 2 7 eqtrid B dom A × B = A