Metamath Proof Explorer


Theorem dmxpOLD

Description: Obsolete version of dmxp as of 19-Dec-2024. (Contributed by NM, 28-Jul-1995) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dmxpOLD B dom A × B = A

Proof

Step Hyp Ref Expression
1 df-xp A × B = y x | y A x B
2 1 dmeqi dom A × B = dom y x | y A x B
3 n0 B x x B
4 3 biimpi B x x B
5 4 ralrimivw B y A x x B
6 dmopab3 y A x x B dom y x | y A x B = A
7 5 6 sylib B dom y x | y A x B = A
8 2 7 eqtrid B dom A × B = A