Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
dmxpid
Next ⟩
dmxpin
Metamath Proof Explorer
Ascii
Unicode
Theorem
dmxpid
Description:
The domain of a Cartesian square.
(Contributed by
NM
, 28-Jul-1995)
Ref
Expression
Assertion
dmxpid
⊢
dom
⁡
A
×
A
=
A
Proof
Step
Hyp
Ref
Expression
1
dm0
⊢
dom
⁡
∅
=
∅
2
xpeq1
⊢
A
=
∅
→
A
×
A
=
∅
×
A
3
0xp
⊢
∅
×
A
=
∅
4
2
3
eqtrdi
⊢
A
=
∅
→
A
×
A
=
∅
5
4
dmeqd
⊢
A
=
∅
→
dom
⁡
A
×
A
=
dom
⁡
∅
6
id
⊢
A
=
∅
→
A
=
∅
7
1
5
6
3eqtr4a
⊢
A
=
∅
→
dom
⁡
A
×
A
=
A
8
dmxp
⊢
A
≠
∅
→
dom
⁡
A
×
A
=
A
9
7
8
pm2.61ine
⊢
dom
⁡
A
×
A
=
A