Metamath Proof Explorer


Theorem dnnumch2

Description: Define an enumeration (weak dominance version) of a set from a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015)

Ref Expression
Hypotheses dnnumch.f F = recs z V G A ran z
dnnumch.a φ A V
dnnumch.g φ y 𝒫 A y G y y
Assertion dnnumch2 φ A ran F

Proof

Step Hyp Ref Expression
1 dnnumch.f F = recs z V G A ran z
2 dnnumch.a φ A V
3 dnnumch.g φ y 𝒫 A y G y y
4 1 2 3 dnnumch1 φ x On F x : x 1-1 onto A
5 f1ofo F x : x 1-1 onto A F x : x onto A
6 forn F x : x onto A ran F x = A
7 5 6 syl F x : x 1-1 onto A ran F x = A
8 resss F x F
9 rnss F x F ran F x ran F
10 8 9 mp1i F x : x 1-1 onto A ran F x ran F
11 7 10 eqsstrrd F x : x 1-1 onto A A ran F
12 11 a1i φ F x : x 1-1 onto A A ran F
13 12 rexlimdvw φ x On F x : x 1-1 onto A A ran F
14 4 13 mpd φ A ran F