Metamath Proof Explorer


Theorem dnnumch3

Description: Define an injection from a set into the ordinals using a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015)

Ref Expression
Hypotheses dnnumch.f F = recs z V G A ran z
dnnumch.a φ A V
dnnumch.g φ y 𝒫 A y G y y
Assertion dnnumch3 φ x A F -1 x : A 1-1 On

Proof

Step Hyp Ref Expression
1 dnnumch.f F = recs z V G A ran z
2 dnnumch.a φ A V
3 dnnumch.g φ y 𝒫 A y G y y
4 cnvimass F -1 x dom F
5 1 tfr1 F Fn On
6 5 fndmi dom F = On
7 4 6 sseqtri F -1 x On
8 1 2 3 dnnumch2 φ A ran F
9 8 sselda φ x A x ran F
10 inisegn0 x ran F F -1 x
11 9 10 sylib φ x A F -1 x
12 oninton F -1 x On F -1 x F -1 x On
13 7 11 12 sylancr φ x A F -1 x On
14 13 fmpttd φ x A F -1 x : A On
15 1 2 3 dnnumch3lem φ v A x A F -1 x v = F -1 v
16 15 adantrr φ v A w A x A F -1 x v = F -1 v
17 1 2 3 dnnumch3lem φ w A x A F -1 x w = F -1 w
18 17 adantrl φ v A w A x A F -1 x w = F -1 w
19 16 18 eqeq12d φ v A w A x A F -1 x v = x A F -1 x w F -1 v = F -1 w
20 fveq2 F -1 v = F -1 w F F -1 v = F F -1 w
21 20 adantl φ v A w A F -1 v = F -1 w F F -1 v = F F -1 w
22 cnvimass F -1 v dom F
23 22 6 sseqtri F -1 v On
24 8 sselda φ v A v ran F
25 inisegn0 v ran F F -1 v
26 24 25 sylib φ v A F -1 v
27 onint F -1 v On F -1 v F -1 v F -1 v
28 23 26 27 sylancr φ v A F -1 v F -1 v
29 fniniseg F Fn On F -1 v F -1 v F -1 v On F F -1 v = v
30 5 29 ax-mp F -1 v F -1 v F -1 v On F F -1 v = v
31 30 simprbi F -1 v F -1 v F F -1 v = v
32 28 31 syl φ v A F F -1 v = v
33 32 adantrr φ v A w A F F -1 v = v
34 33 adantr φ v A w A F -1 v = F -1 w F F -1 v = v
35 cnvimass F -1 w dom F
36 35 6 sseqtri F -1 w On
37 8 sselda φ w A w ran F
38 inisegn0 w ran F F -1 w
39 37 38 sylib φ w A F -1 w
40 onint F -1 w On F -1 w F -1 w F -1 w
41 36 39 40 sylancr φ w A F -1 w F -1 w
42 fniniseg F Fn On F -1 w F -1 w F -1 w On F F -1 w = w
43 5 42 ax-mp F -1 w F -1 w F -1 w On F F -1 w = w
44 43 simprbi F -1 w F -1 w F F -1 w = w
45 41 44 syl φ w A F F -1 w = w
46 45 adantrl φ v A w A F F -1 w = w
47 46 adantr φ v A w A F -1 v = F -1 w F F -1 w = w
48 21 34 47 3eqtr3d φ v A w A F -1 v = F -1 w v = w
49 48 ex φ v A w A F -1 v = F -1 w v = w
50 19 49 sylbid φ v A w A x A F -1 x v = x A F -1 x w v = w
51 50 ralrimivva φ v A w A x A F -1 x v = x A F -1 x w v = w
52 dff13 x A F -1 x : A 1-1 On x A F -1 x : A On v A w A x A F -1 x v = x A F -1 x w v = w
53 14 51 52 sylanbrc φ x A F -1 x : A 1-1 On