Step |
Hyp |
Ref |
Expression |
1 |
|
dnnumch.f |
|
2 |
|
dnnumch.a |
|
3 |
|
dnnumch.g |
|
4 |
|
cnvimass |
|
5 |
1
|
tfr1 |
|
6 |
5
|
fndmi |
|
7 |
4 6
|
sseqtri |
|
8 |
1 2 3
|
dnnumch2 |
|
9 |
8
|
sselda |
|
10 |
|
inisegn0 |
|
11 |
9 10
|
sylib |
|
12 |
|
oninton |
|
13 |
7 11 12
|
sylancr |
|
14 |
13
|
fmpttd |
|
15 |
1 2 3
|
dnnumch3lem |
|
16 |
15
|
adantrr |
|
17 |
1 2 3
|
dnnumch3lem |
|
18 |
17
|
adantrl |
|
19 |
16 18
|
eqeq12d |
|
20 |
|
fveq2 |
|
21 |
20
|
adantl |
|
22 |
|
cnvimass |
|
23 |
22 6
|
sseqtri |
|
24 |
8
|
sselda |
|
25 |
|
inisegn0 |
|
26 |
24 25
|
sylib |
|
27 |
|
onint |
|
28 |
23 26 27
|
sylancr |
|
29 |
|
fniniseg |
|
30 |
5 29
|
ax-mp |
|
31 |
30
|
simprbi |
|
32 |
28 31
|
syl |
|
33 |
32
|
adantrr |
|
34 |
33
|
adantr |
|
35 |
|
cnvimass |
|
36 |
35 6
|
sseqtri |
|
37 |
8
|
sselda |
|
38 |
|
inisegn0 |
|
39 |
37 38
|
sylib |
|
40 |
|
onint |
|
41 |
36 39 40
|
sylancr |
|
42 |
|
fniniseg |
|
43 |
5 42
|
ax-mp |
|
44 |
43
|
simprbi |
|
45 |
41 44
|
syl |
|
46 |
45
|
adantrl |
|
47 |
46
|
adantr |
|
48 |
21 34 47
|
3eqtr3d |
|
49 |
48
|
ex |
|
50 |
19 49
|
sylbid |
|
51 |
50
|
ralrimivva |
|
52 |
|
dff13 |
|
53 |
14 51 52
|
sylanbrc |
|