Metamath Proof Explorer


Theorem dnwech

Description: Define a well-ordering from a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015)

Ref Expression
Hypotheses dnnumch.f F = recs z V G A ran z
dnnumch.a φ A V
dnnumch.g φ y 𝒫 A y G y y
dnwech.h H = v w | F -1 v F -1 w
Assertion dnwech φ H We A

Proof

Step Hyp Ref Expression
1 dnnumch.f F = recs z V G A ran z
2 dnnumch.a φ A V
3 dnnumch.g φ y 𝒫 A y G y y
4 dnwech.h H = v w | F -1 v F -1 w
5 1 2 3 dnnumch3 φ x A F -1 x : A 1-1 On
6 f1f1orn x A F -1 x : A 1-1 On x A F -1 x : A 1-1 onto ran x A F -1 x
7 5 6 syl φ x A F -1 x : A 1-1 onto ran x A F -1 x
8 f1f x A F -1 x : A 1-1 On x A F -1 x : A On
9 frn x A F -1 x : A On ran x A F -1 x On
10 5 8 9 3syl φ ran x A F -1 x On
11 epweon E We On
12 wess ran x A F -1 x On E We On E We ran x A F -1 x
13 10 11 12 mpisyl φ E We ran x A F -1 x
14 eqid v w | x A F -1 x v E x A F -1 x w = v w | x A F -1 x v E x A F -1 x w
15 14 f1owe x A F -1 x : A 1-1 onto ran x A F -1 x E We ran x A F -1 x v w | x A F -1 x v E x A F -1 x w We A
16 7 13 15 sylc φ v w | x A F -1 x v E x A F -1 x w We A
17 fvex x A F -1 x w V
18 17 epeli x A F -1 x v E x A F -1 x w x A F -1 x v x A F -1 x w
19 1 2 3 dnnumch3lem φ v A x A F -1 x v = F -1 v
20 19 adantrr φ v A w A x A F -1 x v = F -1 v
21 1 2 3 dnnumch3lem φ w A x A F -1 x w = F -1 w
22 21 adantrl φ v A w A x A F -1 x w = F -1 w
23 20 22 eleq12d φ v A w A x A F -1 x v x A F -1 x w F -1 v F -1 w
24 18 23 bitr2id φ v A w A F -1 v F -1 w x A F -1 x v E x A F -1 x w
25 24 pm5.32da φ v A w A F -1 v F -1 w v A w A x A F -1 x v E x A F -1 x w
26 25 opabbidv φ v w | v A w A F -1 v F -1 w = v w | v A w A x A F -1 x v E x A F -1 x w
27 incom H A × A = A × A H
28 df-xp A × A = v w | v A w A
29 28 4 ineq12i A × A H = v w | v A w A v w | F -1 v F -1 w
30 inopab v w | v A w A v w | F -1 v F -1 w = v w | v A w A F -1 v F -1 w
31 27 29 30 3eqtri H A × A = v w | v A w A F -1 v F -1 w
32 incom v w | x A F -1 x v E x A F -1 x w A × A = A × A v w | x A F -1 x v E x A F -1 x w
33 28 ineq1i A × A v w | x A F -1 x v E x A F -1 x w = v w | v A w A v w | x A F -1 x v E x A F -1 x w
34 inopab v w | v A w A v w | x A F -1 x v E x A F -1 x w = v w | v A w A x A F -1 x v E x A F -1 x w
35 32 33 34 3eqtri v w | x A F -1 x v E x A F -1 x w A × A = v w | v A w A x A F -1 x v E x A F -1 x w
36 26 31 35 3eqtr4g φ H A × A = v w | x A F -1 x v E x A F -1 x w A × A
37 weeq1 H A × A = v w | x A F -1 x v E x A F -1 x w A × A H A × A We A v w | x A F -1 x v E x A F -1 x w A × A We A
38 36 37 syl φ H A × A We A v w | x A F -1 x v E x A F -1 x w A × A We A
39 weinxp H We A H A × A We A
40 weinxp v w | x A F -1 x v E x A F -1 x w We A v w | x A F -1 x v E x A F -1 x w A × A We A
41 38 39 40 3bitr4g φ H We A v w | x A F -1 x v E x A F -1 x w We A
42 16 41 mpbird φ H We A