Metamath Proof Explorer


Theorem dom3d

Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by Mario Carneiro, 20-May-2013)

Ref Expression
Hypotheses dom2d.1 φ x A C B
dom2d.2 φ x A y A C = D x = y
dom3d.3 φ A V
dom3d.4 φ B W
Assertion dom3d φ A B

Proof

Step Hyp Ref Expression
1 dom2d.1 φ x A C B
2 dom2d.2 φ x A y A C = D x = y
3 dom3d.3 φ A V
4 dom3d.4 φ B W
5 1 2 dom2lem φ x A C : A 1-1 B
6 f1f x A C : A 1-1 B x A C : A B
7 5 6 syl φ x A C : A B
8 fex2 x A C : A B A V B W x A C V
9 7 3 4 8 syl3anc φ x A C V
10 f1eq1 z = x A C z : A 1-1 B x A C : A 1-1 B
11 9 5 10 spcedv φ z z : A 1-1 B
12 brdomg B W A B z z : A 1-1 B
13 4 12 syl φ A B z z : A 1-1 B
14 11 13 mpbird φ A B