Metamath Proof Explorer


Theorem domdifsn

Description: Dominance over a set with one element removed. (Contributed by Stefan O'Rear, 19-Feb-2015) (Revised by Mario Carneiro, 24-Jun-2015)

Ref Expression
Assertion domdifsn A B A B C

Proof

Step Hyp Ref Expression
1 sdomdom A B A B
2 relsdom Rel
3 2 brrelex2i A B B V
4 brdomg B V A B f f : A 1-1 B
5 3 4 syl A B A B f f : A 1-1 B
6 1 5 mpbid A B f f : A 1-1 B
7 6 adantr A B C B f f : A 1-1 B
8 f1f f : A 1-1 B f : A B
9 8 frnd f : A 1-1 B ran f B
10 9 adantl A B C B f : A 1-1 B ran f B
11 sdomnen A B ¬ A B
12 11 ad2antrr A B C B f : A 1-1 B ¬ A B
13 vex f V
14 dff1o5 f : A 1-1 onto B f : A 1-1 B ran f = B
15 14 biimpri f : A 1-1 B ran f = B f : A 1-1 onto B
16 f1oen3g f V f : A 1-1 onto B A B
17 13 15 16 sylancr f : A 1-1 B ran f = B A B
18 17 ex f : A 1-1 B ran f = B A B
19 18 necon3bd f : A 1-1 B ¬ A B ran f B
20 19 adantl A B C B f : A 1-1 B ¬ A B ran f B
21 12 20 mpd A B C B f : A 1-1 B ran f B
22 pssdifn0 ran f B ran f B B ran f
23 10 21 22 syl2anc A B C B f : A 1-1 B B ran f
24 n0 B ran f x x B ran f
25 23 24 sylib A B C B f : A 1-1 B x x B ran f
26 2 brrelex1i A B A V
27 26 ad2antrr A B C B f : A 1-1 B x B ran f A V
28 3 ad2antrr A B C B f : A 1-1 B x B ran f B V
29 28 difexd A B C B f : A 1-1 B x B ran f B x V
30 eldifn x B ran f ¬ x ran f
31 disjsn ran f x = ¬ x ran f
32 30 31 sylibr x B ran f ran f x =
33 32 adantl f : A 1-1 B x B ran f ran f x =
34 9 adantr f : A 1-1 B x B ran f ran f B
35 reldisj ran f B ran f x = ran f B x
36 34 35 syl f : A 1-1 B x B ran f ran f x = ran f B x
37 33 36 mpbid f : A 1-1 B x B ran f ran f B x
38 f1ssr f : A 1-1 B ran f B x f : A 1-1 B x
39 37 38 syldan f : A 1-1 B x B ran f f : A 1-1 B x
40 39 adantl A B C B f : A 1-1 B x B ran f f : A 1-1 B x
41 f1dom2g A V B x V f : A 1-1 B x A B x
42 27 29 40 41 syl3anc A B C B f : A 1-1 B x B ran f A B x
43 eldifi x B ran f x B
44 43 ad2antll A B C B f : A 1-1 B x B ran f x B
45 simplr A B C B f : A 1-1 B x B ran f C B
46 difsnen B V x B C B B x B C
47 28 44 45 46 syl3anc A B C B f : A 1-1 B x B ran f B x B C
48 domentr A B x B x B C A B C
49 42 47 48 syl2anc A B C B f : A 1-1 B x B ran f A B C
50 49 expr A B C B f : A 1-1 B x B ran f A B C
51 50 exlimdv A B C B f : A 1-1 B x x B ran f A B C
52 25 51 mpd A B C B f : A 1-1 B A B C
53 7 52 exlimddv A B C B A B C
54 1 adantr A B ¬ C B A B
55 difsn ¬ C B B C = B
56 55 breq2d ¬ C B A B C A B
57 56 adantl A B ¬ C B A B C A B
58 54 57 mpbird A B ¬ C B A B C
59 53 58 pm2.61dan A B A B C