Metamath Proof Explorer


Theorem domen

Description: Dominance in terms of equinumerosity. Example 1 of Enderton p. 146. (Contributed by NM, 15-Jun-1998)

Ref Expression
Hypothesis bren.1 B V
Assertion domen A B x A x x B

Proof

Step Hyp Ref Expression
1 bren.1 B V
2 1 brdom A B f f : A 1-1 B
3 vex f V
4 3 f11o f : A 1-1 B x f : A 1-1 onto x x B
5 4 exbii f f : A 1-1 B f x f : A 1-1 onto x x B
6 excom f x f : A 1-1 onto x x B x f f : A 1-1 onto x x B
7 5 6 bitri f f : A 1-1 B x f f : A 1-1 onto x x B
8 bren A x f f : A 1-1 onto x
9 8 anbi1i A x x B f f : A 1-1 onto x x B
10 19.41v f f : A 1-1 onto x x B f f : A 1-1 onto x x B
11 9 10 bitr4i A x x B f f : A 1-1 onto x x B
12 11 exbii x A x x B x f f : A 1-1 onto x x B
13 7 12 bitr4i f f : A 1-1 B x A x x B
14 2 13 bitri A B x A x x B