Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Schroeder-Bernstein Theorem
domen1
Next ⟩
domen2
Metamath Proof Explorer
Ascii
Unicode
Theorem
domen1
Description:
Equality-like theorem for equinumerosity and dominance.
(Contributed by
NM
, 8-Nov-2003)
Ref
Expression
Assertion
domen1
⊢
A
≈
B
→
A
≼
C
↔
B
≼
C
Proof
Step
Hyp
Ref
Expression
1
ensym
⊢
A
≈
B
→
B
≈
A
2
endomtr
⊢
B
≈
A
∧
A
≼
C
→
B
≼
C
3
1
2
sylan
⊢
A
≈
B
∧
A
≼
C
→
B
≼
C
4
endomtr
⊢
A
≈
B
∧
B
≼
C
→
A
≼
C
5
3
4
impbida
⊢
A
≈
B
→
A
≼
C
↔
B
≼
C