Metamath Proof Explorer


Theorem domeng

Description: Dominance in terms of equinumerosity, with the sethood requirement expressed as an antecedent. Example 1 of Enderton p. 146. (Contributed by NM, 24-Apr-2004)

Ref Expression
Assertion domeng B C A B x A x x B

Proof

Step Hyp Ref Expression
1 breq2 y = B A y A B
2 sseq2 y = B x y x B
3 2 anbi2d y = B A x x y A x x B
4 3 exbidv y = B x A x x y x A x x B
5 vex y V
6 5 domen A y x A x x y
7 1 4 6 vtoclbg B C A B x A x x B