Metamath Proof Explorer


Theorem domepOLD

Description: Obsolete proof of dmep as of 26-Dec-2023. (Contributed by Scott Fenton, 27-Oct-2010) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion domepOLD dom E = V

Proof

Step Hyp Ref Expression
1 equid x = x
2 el y x y
3 epel x E y x y
4 3 exbii y x E y y x y
5 2 4 mpbir y x E y
6 1 5 2th x = x y x E y
7 6 abbii x | x = x = x | y x E y
8 df-v V = x | x = x
9 df-dm dom E = x | y x E y
10 7 8 9 3eqtr4ri dom E = V