Metamath Proof Explorer


Theorem domfin4

Description: A set dominated by a Dedekind finite set is Dedekind finite. (Contributed by Mario Carneiro, 16-May-2015)

Ref Expression
Assertion domfin4 A FinIV B A B FinIV

Proof

Step Hyp Ref Expression
1 domeng A FinIV B A x B x x A
2 1 biimpa A FinIV B A x B x x A
3 ensym B x x B
4 3 ad2antrl A FinIV B A B x x A x B
5 ssfin4 A FinIV x A x FinIV
6 5 ad2ant2rl A FinIV B A B x x A x FinIV
7 fin4en1 x B x FinIV B FinIV
8 4 6 7 sylc A FinIV B A B x x A B FinIV
9 2 8 exlimddv A FinIV B A B FinIV