Metamath Proof Explorer


Theorem domnlcan

Description: Left-cancellation law for domains. (Contributed by Thierry Arnoux, 22-Mar-2025) (Proof shortened by SN, 21-Jun-2025)

Ref Expression
Hypotheses domncan.b B = Base R
domncan.0 0 ˙ = 0 R
domncan.m · ˙ = R
domncan.x φ X B 0 ˙
domncan.y φ Y B
domncan.z φ Z B
domncan.r φ R Domn
domnlcan.1 φ X · ˙ Y = X · ˙ Z
Assertion domnlcan φ Y = Z

Proof

Step Hyp Ref Expression
1 domncan.b B = Base R
2 domncan.0 0 ˙ = 0 R
3 domncan.m · ˙ = R
4 domncan.x φ X B 0 ˙
5 domncan.y φ Y B
6 domncan.z φ Z B
7 domncan.r φ R Domn
8 domnlcan.1 φ X · ˙ Y = X · ˙ Z
9 1 2 3 4 5 6 7 domnlcanb φ X · ˙ Y = X · ˙ Z Y = Z
10 8 9 mpbid φ Y = Z