Metamath Proof Explorer


Theorem domnlcanb

Description: Left-cancellation law for domains, biconditional version of domnlcan . (Contributed by Thierry Arnoux, 8-Jun-2025) Shorten this theorem and domnlcan overall. (Revised by SN, 21-Jun-2025)

Ref Expression
Hypotheses domncan.b B = Base R
domncan.0 0 ˙ = 0 R
domncan.m · ˙ = R
domncan.x φ X B 0 ˙
domncan.y φ Y B
domncan.z φ Z B
domncan.r φ R Domn
Assertion domnlcanb φ X · ˙ Y = X · ˙ Z Y = Z

Proof

Step Hyp Ref Expression
1 domncan.b B = Base R
2 domncan.0 0 ˙ = 0 R
3 domncan.m · ˙ = R
4 domncan.x φ X B 0 ˙
5 domncan.y φ Y B
6 domncan.z φ Z B
7 domncan.r φ R Domn
8 oveq1 a = X a · ˙ b = X · ˙ b
9 oveq1 a = X a · ˙ c = X · ˙ c
10 8 9 eqeq12d a = X a · ˙ b = a · ˙ c X · ˙ b = X · ˙ c
11 10 imbi1d a = X a · ˙ b = a · ˙ c b = c X · ˙ b = X · ˙ c b = c
12 oveq2 b = Y X · ˙ b = X · ˙ Y
13 12 eqeq1d b = Y X · ˙ b = X · ˙ c X · ˙ Y = X · ˙ c
14 eqeq1 b = Y b = c Y = c
15 13 14 imbi12d b = Y X · ˙ b = X · ˙ c b = c X · ˙ Y = X · ˙ c Y = c
16 oveq2 c = Z X · ˙ c = X · ˙ Z
17 16 eqeq2d c = Z X · ˙ Y = X · ˙ c X · ˙ Y = X · ˙ Z
18 eqeq2 c = Z Y = c Y = Z
19 17 18 imbi12d c = Z X · ˙ Y = X · ˙ c Y = c X · ˙ Y = X · ˙ Z Y = Z
20 1 2 3 isdomn4 R Domn R NzRing a B 0 ˙ b B c B a · ˙ b = a · ˙ c b = c
21 7 20 sylib φ R NzRing a B 0 ˙ b B c B a · ˙ b = a · ˙ c b = c
22 21 simprd φ a B 0 ˙ b B c B a · ˙ b = a · ˙ c b = c
23 11 15 19 22 4 5 6 rspc3dv φ X · ˙ Y = X · ˙ Z Y = Z
24 oveq2 Y = Z X · ˙ Y = X · ˙ Z
25 23 24 impbid1 φ X · ˙ Y = X · ˙ Z Y = Z