Metamath Proof Explorer


Theorem domnnzr

Description: A domain is a nonzero ring. (Contributed by Mario Carneiro, 28-Mar-2015)

Ref Expression
Assertion domnnzr R Domn R NzRing

Proof

Step Hyp Ref Expression
1 eqid Base R = Base R
2 eqid R = R
3 eqid 0 R = 0 R
4 1 2 3 isdomn R Domn R NzRing x Base R y Base R x R y = 0 R x = 0 R y = 0 R
5 4 simplbi R Domn R NzRing