Metamath Proof Explorer


Theorem domnrcan

Description: Right-cancellation law for domains. (Contributed by SN, 21-Jun-2025)

Ref Expression
Hypotheses domnrcan.b B = Base R
domnrcan.0 0 ˙ = 0 R
domnrcan.m · ˙ = R
domnrcan.x φ X B
domnrcan.y φ Y B
domnrcan.z φ Z B 0 ˙
domnrcan.r φ R Domn
domnrcan.1 φ X · ˙ Z = Y · ˙ Z
Assertion domnrcan φ X = Y

Proof

Step Hyp Ref Expression
1 domnrcan.b B = Base R
2 domnrcan.0 0 ˙ = 0 R
3 domnrcan.m · ˙ = R
4 domnrcan.x φ X B
5 domnrcan.y φ Y B
6 domnrcan.z φ Z B 0 ˙
7 domnrcan.r φ R Domn
8 domnrcan.1 φ X · ˙ Z = Y · ˙ Z
9 1 2 3 4 5 6 7 domnrcanb φ X · ˙ Z = Y · ˙ Z X = Y
10 8 9 mpbid φ X = Y