Metamath Proof Explorer


Theorem domnrcanb

Description: Right-cancellation law for domains, biconditional version of domnrcan . (Contributed by SN, 21-Jun-2025)

Ref Expression
Hypotheses domnrcan.b B = Base R
domnrcan.0 0 ˙ = 0 R
domnrcan.m · ˙ = R
domnrcan.x φ X B
domnrcan.y φ Y B
domnrcan.z φ Z B 0 ˙
domnrcan.r φ R Domn
Assertion domnrcanb φ X · ˙ Z = Y · ˙ Z X = Y

Proof

Step Hyp Ref Expression
1 domnrcan.b B = Base R
2 domnrcan.0 0 ˙ = 0 R
3 domnrcan.m · ˙ = R
4 domnrcan.x φ X B
5 domnrcan.y φ Y B
6 domnrcan.z φ Z B 0 ˙
7 domnrcan.r φ R Domn
8 oveq1 a = X a · ˙ c = X · ˙ c
9 8 eqeq1d a = X a · ˙ c = b · ˙ c X · ˙ c = b · ˙ c
10 eqeq1 a = X a = b X = b
11 9 10 imbi12d a = X a · ˙ c = b · ˙ c a = b X · ˙ c = b · ˙ c X = b
12 oveq1 b = Y b · ˙ c = Y · ˙ c
13 12 eqeq2d b = Y X · ˙ c = b · ˙ c X · ˙ c = Y · ˙ c
14 eqeq2 b = Y X = b X = Y
15 13 14 imbi12d b = Y X · ˙ c = b · ˙ c X = b X · ˙ c = Y · ˙ c X = Y
16 oveq2 c = Z X · ˙ c = X · ˙ Z
17 oveq2 c = Z Y · ˙ c = Y · ˙ Z
18 16 17 eqeq12d c = Z X · ˙ c = Y · ˙ c X · ˙ Z = Y · ˙ Z
19 18 imbi1d c = Z X · ˙ c = Y · ˙ c X = Y X · ˙ Z = Y · ˙ Z X = Y
20 1 2 3 isdomn4r R Domn R NzRing a B b B c B 0 ˙ a · ˙ c = b · ˙ c a = b
21 7 20 sylib φ R NzRing a B b B c B 0 ˙ a · ˙ c = b · ˙ c a = b
22 21 simprd φ a B b B c B 0 ˙ a · ˙ c = b · ˙ c a = b
23 11 15 19 22 4 5 6 rspc3dv φ X · ˙ Z = Y · ˙ Z X = Y
24 oveq1 X = Y X · ˙ Z = Y · ˙ Z
25 23 24 impbid1 φ X · ˙ Z = Y · ˙ Z X = Y