Metamath Proof Explorer


Theorem domnrrg

Description: In a domain, any nonzero element is a nonzero-divisor. (Contributed by Mario Carneiro, 28-Mar-2015)

Ref Expression
Hypotheses isdomn2.b B = Base R
isdomn2.t E = RLReg R
isdomn2.z 0 ˙ = 0 R
Assertion domnrrg R Domn X B X 0 ˙ X E

Proof

Step Hyp Ref Expression
1 isdomn2.b B = Base R
2 isdomn2.t E = RLReg R
3 isdomn2.z 0 ˙ = 0 R
4 1 2 3 isdomn2 R Domn R NzRing B 0 ˙ E
5 4 simprbi R Domn B 0 ˙ E
6 5 3ad2ant1 R Domn X B X 0 ˙ B 0 ˙ E
7 simp2 R Domn X B X 0 ˙ X B
8 simp3 R Domn X B X 0 ˙ X 0 ˙
9 eldifsn X B 0 ˙ X B X 0 ˙
10 7 8 9 sylanbrc R Domn X B X 0 ˙ X B 0 ˙
11 6 10 sseldd R Domn X B X 0 ˙ X E