Metamath Proof Explorer


Theorem domnsym

Description: Theorem 22(i) of Suppes p. 97. (Contributed by NM, 10-Jun-1998)

Ref Expression
Assertion domnsym A B ¬ B A

Proof

Step Hyp Ref Expression
1 brdom2 A B A B A B
2 sdomnsym A B ¬ B A
3 sdomnen B A ¬ B A
4 ensym A B B A
5 3 4 nsyl3 A B ¬ B A
6 2 5 jaoi A B A B ¬ B A
7 1 6 sylbi A B ¬ B A