Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Schroeder-Bernstein Theorem
domnsym
Next ⟩
0domg
Metamath Proof Explorer
Ascii
Unicode
Theorem
domnsym
Description:
Theorem 22(i) of
Suppes
p. 97.
(Contributed by
NM
, 10-Jun-1998)
Ref
Expression
Assertion
domnsym
⊢
A
≼
B
→
¬
B
≺
A
Proof
Step
Hyp
Ref
Expression
1
brdom2
⊢
A
≼
B
↔
A
≺
B
∨
A
≈
B
2
sdomnsym
⊢
A
≺
B
→
¬
B
≺
A
3
sdomnen
⊢
B
≺
A
→
¬
B
≈
A
4
ensym
⊢
A
≈
B
→
B
≈
A
5
3
4
nsyl3
⊢
A
≈
B
→
¬
B
≺
A
6
2
5
jaoi
⊢
A
≺
B
∨
A
≈
B
→
¬
B
≺
A
7
1
6
sylbi
⊢
A
≼
B
→
¬
B
≺
A