Metamath Proof Explorer


Theorem domsdomtr

Description: Transitivity of dominance and strict dominance. Theorem 22(ii) of Suppes p. 97. (Contributed by NM, 10-Jun-1998) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion domsdomtr A B B C A C

Proof

Step Hyp Ref Expression
1 sdomdom B C B C
2 domtr A B B C A C
3 1 2 sylan2 A B B C A C
4 simpr A B B C B C
5 ensym A C C A
6 simpl A B B C A B
7 endomtr C A A B C B
8 5 6 7 syl2anr A B B C A C C B
9 domnsym C B ¬ B C
10 8 9 syl A B B C A C ¬ B C
11 10 ex A B B C A C ¬ B C
12 4 11 mt2d A B B C ¬ A C
13 brsdom A C A C ¬ A C
14 3 12 13 sylanbrc A B B C A C