Metamath Proof Explorer


Theorem domtrfir

Description: Transitivity of dominance relation for finite sets, proved without using the Axiom of Power Sets (unlike domtr ). (Contributed by BTernaryTau, 24-Nov-2024)

Ref Expression
Assertion domtrfir C Fin A B B C A C

Proof

Step Hyp Ref Expression
1 domfi C Fin B C B Fin
2 1 3adant2 C Fin A B B C B Fin
3 domtrfi B Fin A B B C A C
4 2 3 syld3an1 C Fin A B B C A C