Step |
Hyp |
Ref |
Expression |
1 |
|
domtriomlem.1 |
|
2 |
|
domtriomlem.2 |
|
3 |
|
domtriomlem.3 |
|
4 |
1
|
pwex |
|
5 |
|
simpl |
|
6 |
5
|
ss2abi |
|
7 |
|
df-pw |
|
8 |
6 7
|
sseqtrri |
|
9 |
4 8
|
ssexi |
|
10 |
2 9
|
eqeltri |
|
11 |
|
omex |
|
12 |
11
|
enref |
|
13 |
10 12
|
axcc3 |
|
14 |
|
nfv |
|
15 |
|
nfra1 |
|
16 |
14 15
|
nfan |
|
17 |
|
nnfi |
|
18 |
|
pwfi |
|
19 |
17 18
|
sylib |
|
20 |
|
ficardom |
|
21 |
|
isinf |
|
22 |
|
breq2 |
|
23 |
22
|
anbi2d |
|
24 |
23
|
exbidv |
|
25 |
24
|
rspcv |
|
26 |
21 25
|
syl5 |
|
27 |
19 20 26
|
3syl |
|
28 |
|
finnum |
|
29 |
|
cardid2 |
|
30 |
|
entr |
|
31 |
30
|
expcom |
|
32 |
19 28 29 31
|
4syl |
|
33 |
32
|
anim2d |
|
34 |
33
|
eximdv |
|
35 |
27 34
|
syld |
|
36 |
2
|
neeq1i |
|
37 |
|
abn0 |
|
38 |
36 37
|
bitri |
|
39 |
35 38
|
syl6ibr |
|
40 |
39
|
com12 |
|
41 |
40
|
adantr |
|
42 |
|
rsp |
|
43 |
42
|
adantl |
|
44 |
41 43
|
mpdd |
|
45 |
16 44
|
ralrimi |
|
46 |
45
|
3adant2 |
|
47 |
46
|
3expib |
|
48 |
47
|
eximdv |
|
49 |
13 48
|
mpi |
|
50 |
|
axcc2 |
|
51 |
|
simp2 |
|
52 |
|
nfra1 |
|
53 |
|
nfra1 |
|
54 |
52 53
|
nfan |
|
55 |
|
fvex |
|
56 |
|
sseq1 |
|
57 |
|
breq1 |
|
58 |
56 57
|
anbi12d |
|
59 |
55 58 2
|
elab2 |
|
60 |
59
|
simprbi |
|
61 |
60
|
ralimi |
|
62 |
|
fveq2 |
|
63 |
|
pweq |
|
64 |
62 63
|
breq12d |
|
65 |
64
|
cbvralvw |
|
66 |
|
peano2 |
|
67 |
|
omelon |
|
68 |
67
|
onelssi |
|
69 |
|
ssralv |
|
70 |
66 68 69
|
3syl |
|
71 |
|
pwsdompw |
|
72 |
71
|
ex |
|
73 |
70 72
|
syld |
|
74 |
|
sdomdif |
|
75 |
73 74
|
syl6 |
|
76 |
65 75
|
syl5bi |
|
77 |
55
|
difexi |
|
78 |
3
|
fvmpt2 |
|
79 |
77 78
|
mpan2 |
|
80 |
79
|
neeq1d |
|
81 |
76 80
|
sylibrd |
|
82 |
61 81
|
syl5com |
|
83 |
82
|
adantr |
|
84 |
|
rsp |
|
85 |
84
|
adantl |
|
86 |
83 85
|
mpdd |
|
87 |
54 86
|
ralrimi |
|
88 |
87
|
3adant2 |
|
89 |
51 88
|
jca |
|
90 |
89
|
3expib |
|
91 |
90
|
eximdv |
|
92 |
50 91
|
mpi |
|
93 |
|
simp2 |
|
94 |
|
nfra1 |
|
95 |
52 94
|
nfan |
|
96 |
|
rsp |
|
97 |
96
|
com12 |
|
98 |
|
rsp |
|
99 |
98
|
com12 |
|
100 |
79
|
eleq2d |
|
101 |
|
eldifi |
|
102 |
100 101
|
syl6bi |
|
103 |
59
|
simplbi |
|
104 |
103
|
sseld |
|
105 |
102 104
|
syl9 |
|
106 |
99 105
|
syld |
|
107 |
106
|
com23 |
|
108 |
97 107
|
syld |
|
109 |
108
|
com13 |
|
110 |
109
|
imp |
|
111 |
95 110
|
ralrimi |
|
112 |
111
|
3adant2 |
|
113 |
|
ffnfv |
|
114 |
93 112 113
|
sylanbrc |
|
115 |
|
nfv |
|
116 |
|
nnord |
|
117 |
|
nnord |
|
118 |
|
ordtri3or |
|
119 |
116 117 118
|
syl2an |
|
120 |
|
fveq2 |
|
121 |
|
fveq2 |
|
122 |
121
|
cbviunv |
|
123 |
|
iuneq1 |
|
124 |
122 123
|
eqtrid |
|
125 |
62 124
|
difeq12d |
|
126 |
120 125
|
eleq12d |
|
127 |
126
|
rspccv |
|
128 |
96 100
|
mpbidi |
|
129 |
94 128
|
ralrimi |
|
130 |
127 129
|
syl11 |
|
131 |
130
|
3ad2ant1 |
|
132 |
|
eldifi |
|
133 |
|
eleq1 |
|
134 |
132 133
|
syl5ib |
|
135 |
134
|
3ad2ant3 |
|
136 |
131 135
|
syld |
|
137 |
136
|
imp |
|
138 |
|
ssiun2 |
|
139 |
138
|
sseld |
|
140 |
137 139
|
syl5 |
|
141 |
140
|
3impib |
|
142 |
128
|
com12 |
|
143 |
142
|
3ad2ant2 |
|
144 |
143
|
imp |
|
145 |
144
|
eldifbd |
|
146 |
145
|
3adant1 |
|
147 |
141 146
|
pm2.21dd |
|
148 |
147
|
3exp |
|
149 |
|
2a1 |
|
150 |
|
fveq2 |
|
151 |
150
|
ssiun2s |
|
152 |
151
|
sseld |
|
153 |
101 152
|
syl5 |
|
154 |
144 153
|
syl5 |
|
155 |
154
|
3impib |
|
156 |
|
eleq1 |
|
157 |
|
eldifn |
|
158 |
156 157
|
syl6bi |
|
159 |
158
|
3ad2ant3 |
|
160 |
131 159
|
syld |
|
161 |
160
|
a1i |
|
162 |
161
|
3imp |
|
163 |
155 162
|
pm2.21dd |
|
164 |
163
|
3exp |
|
165 |
148 149 164
|
3jaoi |
|
166 |
165
|
com12 |
|
167 |
166
|
3expia |
|
168 |
119 167
|
mpid |
|
169 |
168
|
com3r |
|
170 |
169
|
expd |
|
171 |
94 115 170
|
ralrimd |
|
172 |
171
|
ralrimiv |
|
173 |
172
|
3ad2ant3 |
|
174 |
|
dff13 |
|
175 |
114 173 174
|
sylanbrc |
|
176 |
175
|
19.8ad |
|
177 |
1
|
brdom |
|
178 |
176 177
|
sylibr |
|
179 |
178
|
3expib |
|
180 |
179
|
exlimdv |
|
181 |
92 180
|
mpd |
|
182 |
181
|
exlimiv |
|
183 |
49 182
|
syl |
|