Metamath Proof Explorer


Theorem domtriomlem

Description: Lemma for domtriom . (Contributed by Mario Carneiro, 9-Feb-2013)

Ref Expression
Hypotheses domtriomlem.1 A V
domtriomlem.2 B = y | y A y 𝒫 n
domtriomlem.3 C = n ω b n k n b k
Assertion domtriomlem ¬ A Fin ω A

Proof

Step Hyp Ref Expression
1 domtriomlem.1 A V
2 domtriomlem.2 B = y | y A y 𝒫 n
3 domtriomlem.3 C = n ω b n k n b k
4 1 pwex 𝒫 A V
5 simpl y A y 𝒫 n y A
6 5 ss2abi y | y A y 𝒫 n y | y A
7 df-pw 𝒫 A = y | y A
8 6 7 sseqtrri y | y A y 𝒫 n 𝒫 A
9 4 8 ssexi y | y A y 𝒫 n V
10 2 9 eqeltri B V
11 omex ω V
12 11 enref ω ω
13 10 12 axcc3 b b Fn ω n ω B b n B
14 nfv n ¬ A Fin
15 nfra1 n n ω B b n B
16 14 15 nfan n ¬ A Fin n ω B b n B
17 nnfi n ω n Fin
18 pwfi n Fin 𝒫 n Fin
19 17 18 sylib n ω 𝒫 n Fin
20 ficardom 𝒫 n Fin card 𝒫 n ω
21 isinf ¬ A Fin m ω y y A y m
22 breq2 m = card 𝒫 n y m y card 𝒫 n
23 22 anbi2d m = card 𝒫 n y A y m y A y card 𝒫 n
24 23 exbidv m = card 𝒫 n y y A y m y y A y card 𝒫 n
25 24 rspcv card 𝒫 n ω m ω y y A y m y y A y card 𝒫 n
26 21 25 syl5 card 𝒫 n ω ¬ A Fin y y A y card 𝒫 n
27 19 20 26 3syl n ω ¬ A Fin y y A y card 𝒫 n
28 finnum 𝒫 n Fin 𝒫 n dom card
29 cardid2 𝒫 n dom card card 𝒫 n 𝒫 n
30 entr y card 𝒫 n card 𝒫 n 𝒫 n y 𝒫 n
31 30 expcom card 𝒫 n 𝒫 n y card 𝒫 n y 𝒫 n
32 19 28 29 31 4syl n ω y card 𝒫 n y 𝒫 n
33 32 anim2d n ω y A y card 𝒫 n y A y 𝒫 n
34 33 eximdv n ω y y A y card 𝒫 n y y A y 𝒫 n
35 27 34 syld n ω ¬ A Fin y y A y 𝒫 n
36 2 neeq1i B y | y A y 𝒫 n
37 abn0 y | y A y 𝒫 n y y A y 𝒫 n
38 36 37 bitri B y y A y 𝒫 n
39 35 38 syl6ibr n ω ¬ A Fin B
40 39 com12 ¬ A Fin n ω B
41 40 adantr ¬ A Fin n ω B b n B n ω B
42 rsp n ω B b n B n ω B b n B
43 42 adantl ¬ A Fin n ω B b n B n ω B b n B
44 41 43 mpdd ¬ A Fin n ω B b n B n ω b n B
45 16 44 ralrimi ¬ A Fin n ω B b n B n ω b n B
46 45 3adant2 ¬ A Fin b Fn ω n ω B b n B n ω b n B
47 46 3expib ¬ A Fin b Fn ω n ω B b n B n ω b n B
48 47 eximdv ¬ A Fin b b Fn ω n ω B b n B b n ω b n B
49 13 48 mpi ¬ A Fin b n ω b n B
50 axcc2 c c Fn ω n ω C n c n C n
51 simp2 n ω b n B c Fn ω n ω C n c n C n c Fn ω
52 nfra1 n n ω b n B
53 nfra1 n n ω C n c n C n
54 52 53 nfan n n ω b n B n ω C n c n C n
55 fvex b n V
56 sseq1 y = b n y A b n A
57 breq1 y = b n y 𝒫 n b n 𝒫 n
58 56 57 anbi12d y = b n y A y 𝒫 n b n A b n 𝒫 n
59 55 58 2 elab2 b n B b n A b n 𝒫 n
60 59 simprbi b n B b n 𝒫 n
61 60 ralimi n ω b n B n ω b n 𝒫 n
62 fveq2 n = k b n = b k
63 pweq n = k 𝒫 n = 𝒫 k
64 62 63 breq12d n = k b n 𝒫 n b k 𝒫 k
65 64 cbvralvw n ω b n 𝒫 n k ω b k 𝒫 k
66 peano2 n ω suc n ω
67 omelon ω On
68 67 onelssi suc n ω suc n ω
69 ssralv suc n ω k ω b k 𝒫 k k suc n b k 𝒫 k
70 66 68 69 3syl n ω k ω b k 𝒫 k k suc n b k 𝒫 k
71 pwsdompw n ω k suc n b k 𝒫 k k n b k b n
72 71 ex n ω k suc n b k 𝒫 k k n b k b n
73 70 72 syld n ω k ω b k 𝒫 k k n b k b n
74 sdomdif k n b k b n b n k n b k
75 73 74 syl6 n ω k ω b k 𝒫 k b n k n b k
76 65 75 syl5bi n ω n ω b n 𝒫 n b n k n b k
77 55 difexi b n k n b k V
78 3 fvmpt2 n ω b n k n b k V C n = b n k n b k
79 77 78 mpan2 n ω C n = b n k n b k
80 79 neeq1d n ω C n b n k n b k
81 76 80 sylibrd n ω n ω b n 𝒫 n C n
82 61 81 syl5com n ω b n B n ω C n
83 82 adantr n ω b n B n ω C n c n C n n ω C n
84 rsp n ω C n c n C n n ω C n c n C n
85 84 adantl n ω b n B n ω C n c n C n n ω C n c n C n
86 83 85 mpdd n ω b n B n ω C n c n C n n ω c n C n
87 54 86 ralrimi n ω b n B n ω C n c n C n n ω c n C n
88 87 3adant2 n ω b n B c Fn ω n ω C n c n C n n ω c n C n
89 51 88 jca n ω b n B c Fn ω n ω C n c n C n c Fn ω n ω c n C n
90 89 3expib n ω b n B c Fn ω n ω C n c n C n c Fn ω n ω c n C n
91 90 eximdv n ω b n B c c Fn ω n ω C n c n C n c c Fn ω n ω c n C n
92 50 91 mpi n ω b n B c c Fn ω n ω c n C n
93 simp2 n ω b n B c Fn ω n ω c n C n c Fn ω
94 nfra1 n n ω c n C n
95 52 94 nfan n n ω b n B n ω c n C n
96 rsp n ω c n C n n ω c n C n
97 96 com12 n ω n ω c n C n c n C n
98 rsp n ω b n B n ω b n B
99 98 com12 n ω n ω b n B b n B
100 79 eleq2d n ω c n C n c n b n k n b k
101 eldifi c n b n k n b k c n b n
102 100 101 syl6bi n ω c n C n c n b n
103 59 simplbi b n B b n A
104 103 sseld b n B c n b n c n A
105 102 104 syl9 n ω b n B c n C n c n A
106 99 105 syld n ω n ω b n B c n C n c n A
107 106 com23 n ω c n C n n ω b n B c n A
108 97 107 syld n ω n ω c n C n n ω b n B c n A
109 108 com13 n ω b n B n ω c n C n n ω c n A
110 109 imp n ω b n B n ω c n C n n ω c n A
111 95 110 ralrimi n ω b n B n ω c n C n n ω c n A
112 111 3adant2 n ω b n B c Fn ω n ω c n C n n ω c n A
113 ffnfv c : ω A c Fn ω n ω c n A
114 93 112 113 sylanbrc n ω b n B c Fn ω n ω c n C n c : ω A
115 nfv n k ω
116 nnord k ω Ord k
117 nnord n ω Ord n
118 ordtri3or Ord k Ord n k n k = n n k
119 116 117 118 syl2an k ω n ω k n k = n n k
120 fveq2 n = k c n = c k
121 fveq2 k = j b k = b j
122 121 cbviunv k n b k = j n b j
123 iuneq1 n = k j n b j = j k b j
124 122 123 eqtrid n = k k n b k = j k b j
125 62 124 difeq12d n = k b n k n b k = b k j k b j
126 120 125 eleq12d n = k c n b n k n b k c k b k j k b j
127 126 rspccv n ω c n b n k n b k k ω c k b k j k b j
128 96 100 mpbidi n ω c n C n n ω c n b n k n b k
129 94 128 ralrimi n ω c n C n n ω c n b n k n b k
130 127 129 syl11 k ω n ω c n C n c k b k j k b j
131 130 3ad2ant1 k ω n ω c k = c n n ω c n C n c k b k j k b j
132 eldifi c k b k j k b j c k b k
133 eleq1 c k = c n c k b k c n b k
134 132 133 syl5ib c k = c n c k b k j k b j c n b k
135 134 3ad2ant3 k ω n ω c k = c n c k b k j k b j c n b k
136 131 135 syld k ω n ω c k = c n n ω c n C n c n b k
137 136 imp k ω n ω c k = c n n ω c n C n c n b k
138 ssiun2 k n b k k n b k
139 138 sseld k n c n b k c n k n b k
140 137 139 syl5 k n k ω n ω c k = c n n ω c n C n c n k n b k
141 140 3impib k n k ω n ω c k = c n n ω c n C n c n k n b k
142 128 com12 n ω n ω c n C n c n b n k n b k
143 142 3ad2ant2 k ω n ω c k = c n n ω c n C n c n b n k n b k
144 143 imp k ω n ω c k = c n n ω c n C n c n b n k n b k
145 144 eldifbd k ω n ω c k = c n n ω c n C n ¬ c n k n b k
146 145 3adant1 k n k ω n ω c k = c n n ω c n C n ¬ c n k n b k
147 141 146 pm2.21dd k n k ω n ω c k = c n n ω c n C n k = n
148 147 3exp k n k ω n ω c k = c n n ω c n C n k = n
149 2a1 k = n k ω n ω c k = c n n ω c n C n k = n
150 fveq2 j = n b j = b n
151 150 ssiun2s n k b n j k b j
152 151 sseld n k c n b n c n j k b j
153 101 152 syl5 n k c n b n k n b k c n j k b j
154 144 153 syl5 n k k ω n ω c k = c n n ω c n C n c n j k b j
155 154 3impib n k k ω n ω c k = c n n ω c n C n c n j k b j
156 eleq1 c k = c n c k b k j k b j c n b k j k b j
157 eldifn c n b k j k b j ¬ c n j k b j
158 156 157 syl6bi c k = c n c k b k j k b j ¬ c n j k b j
159 158 3ad2ant3 k ω n ω c k = c n c k b k j k b j ¬ c n j k b j
160 131 159 syld k ω n ω c k = c n n ω c n C n ¬ c n j k b j
161 160 a1i n k k ω n ω c k = c n n ω c n C n ¬ c n j k b j
162 161 3imp n k k ω n ω c k = c n n ω c n C n ¬ c n j k b j
163 155 162 pm2.21dd n k k ω n ω c k = c n n ω c n C n k = n
164 163 3exp n k k ω n ω c k = c n n ω c n C n k = n
165 148 149 164 3jaoi k n k = n n k k ω n ω c k = c n n ω c n C n k = n
166 165 com12 k ω n ω c k = c n k n k = n n k n ω c n C n k = n
167 166 3expia k ω n ω c k = c n k n k = n n k n ω c n C n k = n
168 119 167 mpid k ω n ω c k = c n n ω c n C n k = n
169 168 com3r n ω c n C n k ω n ω c k = c n k = n
170 169 expd n ω c n C n k ω n ω c k = c n k = n
171 94 115 170 ralrimd n ω c n C n k ω n ω c k = c n k = n
172 171 ralrimiv n ω c n C n k ω n ω c k = c n k = n
173 172 3ad2ant3 n ω b n B c Fn ω n ω c n C n k ω n ω c k = c n k = n
174 dff13 c : ω 1-1 A c : ω A k ω n ω c k = c n k = n
175 114 173 174 sylanbrc n ω b n B c Fn ω n ω c n C n c : ω 1-1 A
176 175 19.8ad n ω b n B c Fn ω n ω c n C n c c : ω 1-1 A
177 1 brdom ω A c c : ω 1-1 A
178 176 177 sylibr n ω b n B c Fn ω n ω c n C n ω A
179 178 3expib n ω b n B c Fn ω n ω c n C n ω A
180 179 exlimdv n ω b n B c c Fn ω n ω c n C n ω A
181 92 180 mpd n ω b n B ω A
182 181 exlimiv b n ω b n B ω A
183 49 182 syl ¬ A Fin ω A