Metamath Proof Explorer


Theorem domtriord

Description: Dominance is trichotomous in the restricted case of ordinal numbers. (Contributed by Jeff Hankins, 24-Oct-2009)

Ref Expression
Assertion domtriord A On B On A B ¬ B A

Proof

Step Hyp Ref Expression
1 sbth B A A B B A
2 1 expcom A B B A B A
3 2 a1i A On B On A B B A B A
4 iman B A B A ¬ B A ¬ B A
5 brsdom B A B A ¬ B A
6 4 5 xchbinxr B A B A ¬ B A
7 3 6 syl6ib A On B On A B ¬ B A
8 onelss B On A B A B
9 ssdomg B On A B A B
10 8 9 syld B On A B A B
11 10 adantl A On B On A B A B
12 11 con3d A On B On ¬ A B ¬ A B
13 ontri1 B On A On B A ¬ A B
14 13 ancoms A On B On B A ¬ A B
15 12 14 sylibrd A On B On ¬ A B B A
16 ssdomg A On B A B A
17 16 adantr A On B On B A B A
18 15 17 syld A On B On ¬ A B B A
19 ensym B A A B
20 endom A B A B
21 19 20 syl B A A B
22 21 con3i ¬ A B ¬ B A
23 18 22 jca2 A On B On ¬ A B B A ¬ B A
24 23 5 syl6ibr A On B On ¬ A B B A
25 24 con1d A On B On ¬ B A A B
26 7 25 impbid A On B On A B ¬ B A