Metamath Proof Explorer


Theorem domunsn

Description: Dominance over a set with one element added. (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Assertion domunsn A B A C B

Proof

Step Hyp Ref Expression
1 sdom0 ¬ A
2 breq2 B = A B A
3 1 2 mtbiri B = ¬ A B
4 3 con2i A B ¬ B =
5 neq0 ¬ B = z z B
6 4 5 sylib A B z z B
7 domdifsn A B A B z
8 7 adantr A B z B A B z
9 en2sn C V z V C z
10 9 elvd C V C z
11 endom C z C z
12 10 11 syl C V C z
13 snprc ¬ C V C =
14 13 biimpi ¬ C V C =
15 snex z V
16 15 0dom z
17 14 16 eqbrtrdi ¬ C V C z
18 12 17 pm2.61i C z
19 disjdifr B z z =
20 undom A B z C z B z z = A C B z z
21 19 20 mpan2 A B z C z A C B z z
22 8 18 21 sylancl A B z B A C B z z
23 uncom B z z = z B z
24 simpr A B z B z B
25 24 snssd A B z B z B
26 undif z B z B z = B
27 25 26 sylib A B z B z B z = B
28 23 27 eqtrid A B z B B z z = B
29 22 28 breqtrd A B z B A C B
30 6 29 exlimddv A B A C B