| Step | Hyp | Ref | Expression | 
						
							| 1 |  | domunsncan.a |  | 
						
							| 2 |  | domunsncan.b |  | 
						
							| 3 |  | ssun2 |  | 
						
							| 4 |  | reldom |  | 
						
							| 5 | 4 | brrelex2i |  | 
						
							| 6 | 5 | adantl |  | 
						
							| 7 |  | ssexg |  | 
						
							| 8 | 3 6 7 | sylancr |  | 
						
							| 9 |  | brdomi |  | 
						
							| 10 |  | vex |  | 
						
							| 11 | 10 | resex |  | 
						
							| 12 |  | simprr |  | 
						
							| 13 |  | difss |  | 
						
							| 14 |  | f1ores |  | 
						
							| 15 | 12 13 14 | sylancl |  | 
						
							| 16 |  | f1oen3g |  | 
						
							| 17 | 11 15 16 | sylancr |  | 
						
							| 18 |  | df-f1 |  | 
						
							| 19 |  | imadif |  | 
						
							| 20 | 18 19 | simplbiim |  | 
						
							| 21 | 20 | ad2antll |  | 
						
							| 22 |  | snex |  | 
						
							| 23 |  | simprl |  | 
						
							| 24 |  | unexg |  | 
						
							| 25 | 22 23 24 | sylancr |  | 
						
							| 26 | 25 | difexd |  | 
						
							| 27 |  | f1f |  | 
						
							| 28 |  | fimass |  | 
						
							| 29 | 27 28 | syl |  | 
						
							| 30 | 29 | ad2antll |  | 
						
							| 31 | 30 | ssdifd |  | 
						
							| 32 |  | f1fn |  | 
						
							| 33 | 32 | ad2antll |  | 
						
							| 34 | 1 | snid |  | 
						
							| 35 |  | elun1 |  | 
						
							| 36 | 34 35 | ax-mp |  | 
						
							| 37 |  | fnsnfv |  | 
						
							| 38 | 33 36 37 | sylancl |  | 
						
							| 39 | 38 | difeq2d |  | 
						
							| 40 | 31 39 | sseqtrrd |  | 
						
							| 41 |  | ssdomg |  | 
						
							| 42 | 26 40 41 | sylc |  | 
						
							| 43 |  | ffvelcdm |  | 
						
							| 44 | 27 36 43 | sylancl |  | 
						
							| 45 | 44 | ad2antll |  | 
						
							| 46 | 2 | snid |  | 
						
							| 47 |  | elun1 |  | 
						
							| 48 | 46 47 | mp1i |  | 
						
							| 49 |  | difsnen |  | 
						
							| 50 | 25 45 48 49 | syl3anc |  | 
						
							| 51 |  | domentr |  | 
						
							| 52 | 42 50 51 | syl2anc |  | 
						
							| 53 | 21 52 | eqbrtrd |  | 
						
							| 54 |  | endomtr |  | 
						
							| 55 | 17 53 54 | syl2anc |  | 
						
							| 56 |  | uncom |  | 
						
							| 57 | 56 | difeq1i |  | 
						
							| 58 |  | difun2 |  | 
						
							| 59 | 57 58 | eqtri |  | 
						
							| 60 |  | difsn |  | 
						
							| 61 | 59 60 | eqtrid |  | 
						
							| 62 | 61 | ad2antrr |  | 
						
							| 63 |  | uncom |  | 
						
							| 64 | 63 | difeq1i |  | 
						
							| 65 |  | difun2 |  | 
						
							| 66 | 64 65 | eqtri |  | 
						
							| 67 |  | difsn |  | 
						
							| 68 | 66 67 | eqtrid |  | 
						
							| 69 | 68 | ad2antlr |  | 
						
							| 70 | 55 62 69 | 3brtr3d |  | 
						
							| 71 | 70 | expr |  | 
						
							| 72 | 71 | exlimdv |  | 
						
							| 73 | 9 72 | syl5 |  | 
						
							| 74 | 73 | impancom |  | 
						
							| 75 | 8 74 | mpd |  | 
						
							| 76 |  | en2sn |  | 
						
							| 77 | 1 2 76 | mp2an |  | 
						
							| 78 |  | endom |  | 
						
							| 79 | 77 78 | mp1i |  | 
						
							| 80 |  | simpr |  | 
						
							| 81 |  | incom |  | 
						
							| 82 |  | disjsn |  | 
						
							| 83 | 82 | biimpri |  | 
						
							| 84 | 81 83 | eqtrid |  | 
						
							| 85 | 84 | ad2antlr |  | 
						
							| 86 |  | undom |  | 
						
							| 87 | 79 80 85 86 | syl21anc |  | 
						
							| 88 | 75 87 | impbida |  |