Step |
Hyp |
Ref |
Expression |
1 |
|
domunsncan.a |
|
2 |
|
domunsncan.b |
|
3 |
|
ssun2 |
|
4 |
|
reldom |
|
5 |
4
|
brrelex2i |
|
6 |
5
|
adantl |
|
7 |
|
ssexg |
|
8 |
3 6 7
|
sylancr |
|
9 |
|
brdomi |
|
10 |
|
vex |
|
11 |
10
|
resex |
|
12 |
|
simprr |
|
13 |
|
difss |
|
14 |
|
f1ores |
|
15 |
12 13 14
|
sylancl |
|
16 |
|
f1oen3g |
|
17 |
11 15 16
|
sylancr |
|
18 |
|
df-f1 |
|
19 |
|
imadif |
|
20 |
18 19
|
simplbiim |
|
21 |
20
|
ad2antll |
|
22 |
|
snex |
|
23 |
|
simprl |
|
24 |
|
unexg |
|
25 |
22 23 24
|
sylancr |
|
26 |
25
|
difexd |
|
27 |
|
f1f |
|
28 |
|
fimass |
|
29 |
27 28
|
syl |
|
30 |
29
|
ad2antll |
|
31 |
30
|
ssdifd |
|
32 |
|
f1fn |
|
33 |
32
|
ad2antll |
|
34 |
1
|
snid |
|
35 |
|
elun1 |
|
36 |
34 35
|
ax-mp |
|
37 |
|
fnsnfv |
|
38 |
33 36 37
|
sylancl |
|
39 |
38
|
difeq2d |
|
40 |
31 39
|
sseqtrrd |
|
41 |
|
ssdomg |
|
42 |
26 40 41
|
sylc |
|
43 |
|
ffvelrn |
|
44 |
27 36 43
|
sylancl |
|
45 |
44
|
ad2antll |
|
46 |
2
|
snid |
|
47 |
|
elun1 |
|
48 |
46 47
|
mp1i |
|
49 |
|
difsnen |
|
50 |
25 45 48 49
|
syl3anc |
|
51 |
|
domentr |
|
52 |
42 50 51
|
syl2anc |
|
53 |
21 52
|
eqbrtrd |
|
54 |
|
endomtr |
|
55 |
17 53 54
|
syl2anc |
|
56 |
|
uncom |
|
57 |
56
|
difeq1i |
|
58 |
|
difun2 |
|
59 |
57 58
|
eqtri |
|
60 |
|
difsn |
|
61 |
59 60
|
eqtrid |
|
62 |
61
|
ad2antrr |
|
63 |
|
uncom |
|
64 |
63
|
difeq1i |
|
65 |
|
difun2 |
|
66 |
64 65
|
eqtri |
|
67 |
|
difsn |
|
68 |
66 67
|
eqtrid |
|
69 |
68
|
ad2antlr |
|
70 |
55 62 69
|
3brtr3d |
|
71 |
70
|
expr |
|
72 |
71
|
exlimdv |
|
73 |
9 72
|
syl5 |
|
74 |
73
|
impancom |
|
75 |
8 74
|
mpd |
|
76 |
|
en2sn |
|
77 |
1 2 76
|
mp2an |
|
78 |
|
endom |
|
79 |
77 78
|
mp1i |
|
80 |
|
simpr |
|
81 |
|
incom |
|
82 |
|
disjsn |
|
83 |
82
|
biimpri |
|
84 |
81 83
|
eqtrid |
|
85 |
84
|
ad2antlr |
|
86 |
|
undom |
|
87 |
79 80 85 86
|
syl21anc |
|
88 |
75 87
|
impbida |
|