Metamath Proof Explorer


Theorem dp2cl

Description: Closure for the decimal fraction constructor if both values are reals. (Contributed by David A. Wheeler, 15-May-2015)

Ref Expression
Assertion dp2cl Could not format assertion : No typesetting found for |- ( ( A e. RR /\ B e. RR ) -> _ A B e. RR ) with typecode |-

Proof

Step Hyp Ref Expression
1 df-dp2 Could not format _ A B = ( A + ( B / ; 1 0 ) ) : No typesetting found for |- _ A B = ( A + ( B / ; 1 0 ) ) with typecode |-
2 10re 10
3 10pos 0 < 10
4 2 3 gt0ne0ii 10 0
5 redivcl B 10 10 0 B 10
6 2 4 5 mp3an23 B B 10
7 readdcl A B 10 A + B 10
8 6 7 sylan2 A B A + B 10
9 1 8 eqeltrid Could not format ( ( A e. RR /\ B e. RR ) -> _ A B e. RR ) : No typesetting found for |- ( ( A e. RR /\ B e. RR ) -> _ A B e. RR ) with typecode |-