Metamath Proof Explorer


Theorem dp2clq

Description: Closure for a decimal fraction. (Contributed by Thierry Arnoux, 16-Dec-2021)

Ref Expression
Hypotheses dp2clq.a A 0
dp2clq.b B
Assertion dp2clq Could not format assertion : No typesetting found for |- _ A B e. QQ with typecode |-

Proof

Step Hyp Ref Expression
1 dp2clq.a A 0
2 dp2clq.b B
3 df-dp2 Could not format _ A B = ( A + ( B / ; 1 0 ) ) : No typesetting found for |- _ A B = ( A + ( B / ; 1 0 ) ) with typecode |-
4 nn0ssq 0
5 4 1 sselii A
6 10nn0 10 0
7 4 6 sselii 10
8 0re 0
9 10pos 0 < 10
10 8 9 gtneii 10 0
11 qdivcl B 10 10 0 B 10
12 2 7 10 11 mp3an B 10
13 qaddcl A B 10 A + B 10
14 5 12 13 mp2an A + B 10
15 3 14 eqeltri Could not format _ A B e. QQ : No typesetting found for |- _ A B e. QQ with typecode |-