Metamath Proof Explorer


Theorem dp2lt

Description: Comparing two decimal fractions (equal unit places). (Contributed by Thierry Arnoux, 16-Dec-2021)

Ref Expression
Hypotheses dp2lt.a A 0
dp2lt.b B +
dp2lt.c C +
dp2lt.l B < C
Assertion dp2lt Could not format assertion : No typesetting found for |- _ A B < _ A C with typecode |-

Proof

Step Hyp Ref Expression
1 dp2lt.a A 0
2 dp2lt.b B +
3 dp2lt.c C +
4 dp2lt.l B < C
5 rpssre +
6 5 2 sselii B
7 10re 10
8 0re 0
9 10pos 0 < 10
10 8 9 gtneii 10 0
11 redivcl B 10 10 0 B 10
12 6 7 10 11 mp3an B 10
13 5 3 sselii C
14 redivcl C 10 10 0 C 10
15 13 7 10 14 mp3an C 10
16 1 nn0rei A
17 12 15 16 3pm3.2i B 10 C 10 A
18 7 9 pm3.2i 10 0 < 10
19 ltdiv1 B C 10 0 < 10 B < C B 10 < C 10
20 6 13 18 19 mp3an B < C B 10 < C 10
21 4 20 mpbi B 10 < C 10
22 axltadd B 10 C 10 A B 10 < C 10 A + B 10 < A + C 10
23 22 imp B 10 C 10 A B 10 < C 10 A + B 10 < A + C 10
24 17 21 23 mp2an A + B 10 < A + C 10
25 df-dp2 Could not format _ A B = ( A + ( B / ; 1 0 ) ) : No typesetting found for |- _ A B = ( A + ( B / ; 1 0 ) ) with typecode |-
26 df-dp2 Could not format _ A C = ( A + ( C / ; 1 0 ) ) : No typesetting found for |- _ A C = ( A + ( C / ; 1 0 ) ) with typecode |-
27 24 25 26 3brtr4i Could not format _ A B < _ A C : No typesetting found for |- _ A B < _ A C with typecode |-