Metamath Proof Explorer


Theorem dp2lt10

Description: Decimal fraction builds real numbers less than 10. (Contributed by Thierry Arnoux, 16-Dec-2021)

Ref Expression
Hypotheses dp2lt10.a A 0
dp2lt10.b B +
dp2lt10.1 A < 10
dp2lt10.2 B < 10
Assertion dp2lt10 Could not format assertion : No typesetting found for |- _ A B < ; 1 0 with typecode |-

Proof

Step Hyp Ref Expression
1 dp2lt10.a A 0
2 dp2lt10.b B +
3 dp2lt10.1 A < 10
4 dp2lt10.2 B < 10
5 df-dp2 Could not format _ A B = ( A + ( B / ; 1 0 ) ) : No typesetting found for |- _ A B = ( A + ( B / ; 1 0 ) ) with typecode |-
6 9p1e10 9 + 1 = 10
7 3 6 breqtrri A < 9 + 1
8 1 nn0zi A
9 9nn0 9 0
10 9 nn0zi 9
11 zleltp1 A 9 A 9 A < 9 + 1
12 8 10 11 mp2an A 9 A < 9 + 1
13 7 12 mpbir A 9
14 rpssre +
15 14 2 sselii B
16 10re 10
17 10pos 0 < 10
18 16 17 elrpii 10 +
19 divlt1lt B 10 + B 10 < 1 B < 10
20 15 18 19 mp2an B 10 < 1 B < 10
21 4 20 mpbir B 10 < 1
22 1 nn0rei A
23 0re 0
24 23 17 gtneii 10 0
25 15 16 24 redivcli B 10
26 22 25 pm3.2i A B 10
27 9re 9
28 1re 1
29 27 28 pm3.2i 9 1
30 leltadd A B 10 9 1 A 9 B 10 < 1 A + B 10 < 9 + 1
31 26 29 30 mp2an A 9 B 10 < 1 A + B 10 < 9 + 1
32 13 21 31 mp2an A + B 10 < 9 + 1
33 32 6 breqtri A + B 10 < 10
34 5 33 eqbrtri Could not format _ A B < ; 1 0 : No typesetting found for |- _ A B < ; 1 0 with typecode |-